Efecto de la Sustitución Total del Agregado de Cantera por Agregado de Río en la Resistencia del Concreto
##plugins.themes.bootstrap3.article.main##
Resumen
Actualmente, la recolección y el proceso de triturado de agregado finos y gruesos, se ha vuelto costoso y ha aumentado el tiempo de transporte por la complejidad de ciertas zonas en la sierra del Perú. Como consecuencia se extrae agregado de río como sustitución total del agregado fino y grueso para la preparación de concreto estructural, desconociendo a ciencia cierta si es totalmente viable utilizar este agregado para beneficio de intereses constructivos. Por lo cual, este estudio tiene como objetivo evaluar la sustitución total del agregado fino y grueso por el agregado de río obtenido de la ciudad de Cajamarca, Perú sobre las propiedades mecánicas del concreto. Se fabricaron probetas de hormigón con árido fino y grueso y otras con árido de río de las canteras Huaquillo y Portachuelo, respectivamente. Se consideraron los diseños de 175 kg/cm2 y 210 kg/cm2, además ensayos como slump, peso unitario, resistencia a la compresión, flexión y un análisis de varianza (ANOVA) en bloque de Tukey. Se realizó una campaña experimental con pastas cementosas para evaluar el efecto en las propiedades físicas y mecánicas debido al uso de agregado de río, las muestras que contenían agregado fino y agregado grueso revelaron buenos resultados en términos de propiedades mecánicas. Sin embargo, el concreto elaborado con agregado de río cumplen con la resistencia mínima requerida de diseño teórico siendo apta para utilizarse como sustituto total, siendo un tema científico nuevo e importante a destacar.
Descargas
Descargas
Detalles del artículo
Citas
Aïssoun, B. M., Soo-Duck, H., & Kamal, K. H. (2015). Influence of aggregate characteristics on workability of superworkable concrete. Materials and Structures, 49(1-2), 597 - 609. https://doi.org/10.1617/s11527-015-0522-9
Ararsa, W., Tucay Quezon, E., & Aboneh, A. (2018). Suitability of Ambo Sandstone Fine Aggregate as an Alternative River Sand Replacement in Normal Concrete Production. American Journal of Civil Engineering and Architecture, 6(4), 140-146. https://doi.org/10.12691/ajcea-6-4-2
Beddaa, H., Fraj, A. B., & Ducléroir, S. (2021). Experimental study on river sediment incorporation in concrete as a full aggregate replacement: Technical feasibility and economic viability. Construction and Building Materials, 313, 125425. https://doi.org/10.1016/j.conbuildmat.2021.125425
Beddaa, H., Ouazi, I., Ben Fraj, A., Lavergne, F., & Torrenti, J.-M. (2020). Reuse potential of dredged river sediments in concrete: Effect of sediment variability. Journal of Cleaner Production, 265, 121665. https://doi.org/10.1016/j.jclepro.2020.121665
Da Silva, M., Pepe, D. S., Mende de Andrade, R., Shubert Pfeil, M., & Toledo Filho, R. (2017). Rheological and mechanical behavior of High Strength Steel Fiber-River Gravel Self Compacting Concrete. Construction and Building Materials, 150, 606-618. https://doi.org/10.1016/j.conbuildmat.2017.06.030
Duc-Trong, N., Duy-Liem, N., & MyNgoc-Tra, L. (2022). An experimental investigation on the utilization of crushed sand in improving workability and mechanical resistance of concrete. Construction and Building Materials, 326, 126766. https://doi.org/10.1016/j.conbuildmat.2022.126766
Eziefula, U. G., Opara, H. E., & Eziefula, B. I. (2020). Strength of concrete produced with different sources of aggregates from selected parts of Abia and Imo States of Nigeria. Journal of Engineering, Design and Technology, 18(5), 1053 - 1061. https://doi.org/10.1108/JEDT-08-2019-0220
Fadzilla Sari, F., Limantara, A. D., Ridwan, A., Gardjito, E., Subiyanto, B., Sudarmanto, H., . . . . Wiwoho Mudjanarko, S. (2020). Laboratory Testing on The Standard Mixed Designed Paving with Bamboo Material as Smooth and Rough Aggregate. IOP Conference Series: Earth and Environmental Science. 498, pp. 1-8. Jawa Timur, Indonesia: IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/498/1/012032
Flores Fernández, A. M., Villafranca Castillo, A. J., & Reconco Amaya, J. A. (2019). Concrete with recycled aggregate: a construction material option with sustainability criteria. Unitec, 8, 120-124. https://doi.org/10.5377/innovare.v8i2.9023
García, J., Arriola, G., Villena, L., Muñoz, S. (2023). Strength of Concrete Using Partial Addition of Residual Wood Ash with Respect to Cement. Revista Politecnica, 52(1). 45-54. https://doi.org/10.33333/rp.vol52n1.05
Grinys, A., Augonis, A., Daukšys, M., & Pupeiki, D. (2020). Mechanical properties and durability of rubberized and SBR latex modified rubberized concrete. Construction and Building Materials, 248, 118584. https://doi.org/10.1016/j.conbuildmat.2020.118584
Güçlüer, K. (2020). Investigation of the effects of aggregate textural properties on compressive. Journal of Building Engineering, 27, 9. https://doi.org/10.1016/j.jobe.2019.100949
Hachani, M. I., Kriker, A., & Seghiri, M. (2017). Experimental study and comparison between the use of natural and artificial coarse aggregate in concrete mixture. Energy Procedia, 119, 182-191. https://doi.org/10.1016/j.egypro.2017.07.067
Laserna, S., & Montero, J. (2016). Influence of natural aggregates typology on recycled concrete strength properties. Construction and Building Materials, 115, 78-86. https://doi.org/10.1016/j.conbuildmat.2016.04.037
Limantara, A. D., Widodo , A., Winarto , S., Krisnawati , L. D., & Mudjanarko , S. W. (2017). Optimizing the use of natural gravel Brantas river as normal concrete mixed with quality fc = 19.3 Mpa. 4th International Conference on Civil and Environmental Engineering for Sustainability, IConCEES 2017. Langkawi. https://doi.org/10.1088/1755-1315/140/1/012104
Oliveira, M. A., Scotto, M. G., Barbosa, S., Freire de Andrade, C., & Freitas, M. d. (2020). Morphological controls and statistical modelling of boulder transport by extreme storms. Marine Geology, 426, 16. https://doi.org/10.1016/j.margeo.2020.106216
Orozco, M., Avila, Y., Restrepo, S., & Parody, A. (2018). Influencing factors in concrete quality: a survey of relevant actors in the concrete industry. Revista Ingeniería de Construcción, 33, 161-172. https://doi.org/10.4067/S0718-50732018000200161
Qing-Xiang, M., Dandan, L., & Yang, L. (2020). Mesoscale computational modeling of concrete-like particle-reinforced composites with non-convex aggregates. Computers & Structures, 240, 106349. https://doi.org/10.1016/j.compstruc.2020.106349
Solís-Carcaño, R. G., & Alcocer-Fraga, M. A. (2019). Durability of concrete with high absorption aggregates. Engineering, Research and Technology, 20, 1-13. https://doi.org/10.22201/fi.25940732e.2019.20n4.039
Tugrul Tunc, E. (2018). Strength Properties of Hardened Concrete Produced with Natural Aggregates for Different Water/Cement Ratios. European Journal of Science and Technology, 14, 280 - 287. https://doi.org/10.31590/ejosat.486093
Yan, J., Zhong, S., Chen, S., Lv, Y., Yang, L., Peng, G., & Deng, A. (2022). Study on the Application of Sediment-Based Embankment Building and Ultra-High-Performance Concrete (UHPC) Preparation in the Resource Utilization of Yellow River Sediment. Materials, 15, 5668. https://doi.org/10.3390/ma15165668
Yaragal, S. C., Basavana, G., & Rajasekaran, C. (2019). Characterization and performance of processed lateritic fine aggregates in cement mortars and concretes. Construction and Building Materials, 200, 10-25. https://doi.org/10.1016/j.conbuildmat.2018.12.072
Zega, C. J., Taus, V. L., & Di Maio, A. A. (2006). Physico-mechanical behavior of recycled concretes made with pebbles. Technical Bulletin, 44, 17-26. Retrieved September 10, 2023, http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0376-723X2006000300003&lng=es&tlng=.